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British Mathematical Olympiad
Round 2 : Tuesday, 31 January 2006

Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then draft your final version
carefully before writing up your best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than partial attempts at all four problems.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

In early March, twenty students will be invited
to attend the training session to be held at
Trinity College, Cambridge (6-10 April). At the
training session, students sit a pair of IMO-style
papers and 8 students will be selected for further
training. Those selected will be expected to
participate in correspondence work and to attend
further training. The UK Team of 6 for this
summer’s International Mathematical Olympiad
(to be held in Ljubljana, Slovenia 10-18 July) will
then be chosen.

Do not turn over until told to do so.
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1. Find the minimum possible value of x2 + y2 given that x and y are
real numbers satisfying

xy(x2 − y2) = x2 + y2 and x 6= 0.

2. Let x and y be positive integers with no prime factors larger than 5.
Find all such x and y which satisfy

x2 − y2 = 2k

for some non-negative integer k.

3. Let ABC be a triangle with AC > AB. The point X lies on the
side BA extended through A, and the point Y lies on the side CA in
such a way that BX = CA and CY = BA. The line XY meets the
perpendicular bisector of side BC at P . Show that

6 BPC + 6 BAC = 180o.

4. An exam consisting of six questions is sat by 2006 children. Each
question is marked either right or wrong. Any three children have
right answers to at least five of the six questions between them. Let N

be the total number of right answers achieved by all the children (i.e.
the total number of questions solved by child 1 + the total solved by
child 2 + · · · + the total solved by child 2006). Find the least possible
value of N .


